p-group, metabelian, nilpotent (class 3), monomial
Aliases: C24.162C23, (C2×C42)⋊5C4, (C2×C4).68C42, C42⋊C2⋊17C4, C23.51(C2×Q8), (C22×C4).38Q8, C4○(C23.9D4), C23.539(C2×D4), (C22×C4).755D4, C22.5(C2×C42), C23.9D4.9C2, (C23×C4).220C22, C23.175(C22×C4), C4.21(C2.C42), C2.4(C23.C23), (C2×C4⋊C4)⋊24C4, C22.13(C2×C4⋊C4), (C2×C4).125(C4⋊C4), C22⋊C4.47(C2×C4), (C22×C4).46(C2×C4), (C2×C42⋊C2).9C2, (C2×C4).113(C22⋊C4), C22.108(C2×C22⋊C4), C2.17(C2×C2.C42), (C2×C22⋊C4).407C22, SmallGroup(128,472)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24.162C23
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=1, e2=b, f2=c, g2=d, ab=ba, ac=ca, eae-1=ad=da, af=fa, ag=ga, bc=cb, fbf-1=bd=db, be=eb, bg=gb, cd=dc, ce=ec, cf=fc, cg=gc, de=ed, df=fd, dg=gd, fef-1=ade, eg=ge, fg=gf >
Subgroups: 372 in 210 conjugacy classes, 108 normal (16 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C2×C4, C2×C4, C2×C4, C23, C23, C23, C42, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C24, C2×C42, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C42⋊C2, C42⋊C2, C23×C4, C23.9D4, C2×C42⋊C2, C2×C42⋊C2, C24.162C23
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, C2.C42, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C2×C2.C42, C23.C23, C24.162C23
(1 6)(2 25)(3 8)(4 27)(5 16)(7 14)(9 23)(10 32)(11 21)(12 30)(13 28)(15 26)(17 24)(18 29)(19 22)(20 31)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 26)(2 27)(3 28)(4 25)(5 14)(6 15)(7 16)(8 13)(9 29)(10 30)(11 31)(12 32)(17 22)(18 23)(19 24)(20 21)
(1 13)(2 14)(3 15)(4 16)(5 27)(6 28)(7 25)(8 26)(9 20)(10 17)(11 18)(12 19)(21 29)(22 30)(23 31)(24 32)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 32 26 12)(2 18 27 23)(3 22 28 17)(4 9 25 29)(5 31 14 11)(6 10 15 30)(7 21 16 20)(8 19 13 24)
(1 11 13 18)(2 12 14 19)(3 9 15 20)(4 10 16 17)(5 24 27 32)(6 21 28 29)(7 22 25 30)(8 23 26 31)
G:=sub<Sym(32)| (1,6)(2,25)(3,8)(4,27)(5,16)(7,14)(9,23)(10,32)(11,21)(12,30)(13,28)(15,26)(17,24)(18,29)(19,22)(20,31), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,26)(2,27)(3,28)(4,25)(5,14)(6,15)(7,16)(8,13)(9,29)(10,30)(11,31)(12,32)(17,22)(18,23)(19,24)(20,21), (1,13)(2,14)(3,15)(4,16)(5,27)(6,28)(7,25)(8,26)(9,20)(10,17)(11,18)(12,19)(21,29)(22,30)(23,31)(24,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,32,26,12)(2,18,27,23)(3,22,28,17)(4,9,25,29)(5,31,14,11)(6,10,15,30)(7,21,16,20)(8,19,13,24), (1,11,13,18)(2,12,14,19)(3,9,15,20)(4,10,16,17)(5,24,27,32)(6,21,28,29)(7,22,25,30)(8,23,26,31)>;
G:=Group( (1,6)(2,25)(3,8)(4,27)(5,16)(7,14)(9,23)(10,32)(11,21)(12,30)(13,28)(15,26)(17,24)(18,29)(19,22)(20,31), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,26)(2,27)(3,28)(4,25)(5,14)(6,15)(7,16)(8,13)(9,29)(10,30)(11,31)(12,32)(17,22)(18,23)(19,24)(20,21), (1,13)(2,14)(3,15)(4,16)(5,27)(6,28)(7,25)(8,26)(9,20)(10,17)(11,18)(12,19)(21,29)(22,30)(23,31)(24,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,32,26,12)(2,18,27,23)(3,22,28,17)(4,9,25,29)(5,31,14,11)(6,10,15,30)(7,21,16,20)(8,19,13,24), (1,11,13,18)(2,12,14,19)(3,9,15,20)(4,10,16,17)(5,24,27,32)(6,21,28,29)(7,22,25,30)(8,23,26,31) );
G=PermutationGroup([[(1,6),(2,25),(3,8),(4,27),(5,16),(7,14),(9,23),(10,32),(11,21),(12,30),(13,28),(15,26),(17,24),(18,29),(19,22),(20,31)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,26),(2,27),(3,28),(4,25),(5,14),(6,15),(7,16),(8,13),(9,29),(10,30),(11,31),(12,32),(17,22),(18,23),(19,24),(20,21)], [(1,13),(2,14),(3,15),(4,16),(5,27),(6,28),(7,25),(8,26),(9,20),(10,17),(11,18),(12,19),(21,29),(22,30),(23,31),(24,32)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,32,26,12),(2,18,27,23),(3,22,28,17),(4,9,25,29),(5,31,14,11),(6,10,15,30),(7,21,16,20),(8,19,13,24)], [(1,11,13,18),(2,12,14,19),(3,9,15,20),(4,10,16,17),(5,24,27,32),(6,21,28,29),(7,22,25,30),(8,23,26,31)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 4A | 4B | 4C | 4D | 4E | ··· | 4J | 4K | ··· | 4AH |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 |
type | + | + | + | + | - | ||||
image | C1 | C2 | C2 | C4 | C4 | C4 | D4 | Q8 | C23.C23 |
kernel | C24.162C23 | C23.9D4 | C2×C42⋊C2 | C2×C42 | C2×C4⋊C4 | C42⋊C2 | C22×C4 | C22×C4 | C2 |
# reps | 1 | 4 | 3 | 4 | 4 | 16 | 6 | 2 | 4 |
Matrix representation of C24.162C23 ►in GL6(𝔽5)
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
0 | 0 | 0 | 0 | 4 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
0 | 0 | 0 | 0 | 4 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 3 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 2 |
0 | 0 | 0 | 0 | 3 | 0 |
0 | 0 | 2 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 |
2 | 4 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 0 | 3 |
G:=sub<GL(6,GF(5))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,4,0],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,4,0],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,1,0,0,0,0,3,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,3,0,0,0,3,0,0,0,0,2,0,0,0],[2,0,0,0,0,0,4,3,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,3] >;
C24.162C23 in GAP, Magma, Sage, TeX
C_2^4._{162}C_2^3
% in TeX
G:=Group("C2^4.162C2^3");
// GroupNames label
G:=SmallGroup(128,472);
// by ID
G=gap.SmallGroup(128,472);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,112,141,232,352,2019,1411]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=1,e^2=b,f^2=c,g^2=d,a*b=b*a,a*c=c*a,e*a*e^-1=a*d=d*a,a*f=f*a,a*g=g*a,b*c=c*b,f*b*f^-1=b*d=d*b,b*e=e*b,b*g=g*b,c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,d*e=e*d,d*f=f*d,d*g=g*d,f*e*f^-1=a*d*e,e*g=g*e,f*g=g*f>;
// generators/relations